The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.
نویسندگان
چکیده
Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors in the patient's individual treatment. These factors include the number, size, composition and spatial distribution of calcifications in the prostate as well as the distribution of brachytherapy seeds.
منابع مشابه
Investigation of the Effects of Tissue Inhomogeneities on the Dosimetric Parameters of a Cs-137 Brachytherapy Source using the MCNP4C Code
Introduction: Brachytherapy is the use of small encapsulated radioactive sources in close vicinity of tumors. Various methods are used to obtain the dose distribution around brachytherapy sources. TG-43 is a dosimetry protocol proposed by the AAPM for determining dose distributions around brachytherapy sources. The goal of this study is to update this protocol for presence of bone and air inhom...
متن کاملDosimetric Parameters Estimation of I-125 Brachytherapy Source in fat phantom using GATE8.0 code
Introduction: Brachytherapy is one type of internal radiation therapy where radiation sources, which are usually encapsulated, are placed as close as possible to the tumor site or inside the patient's body. In this technique, it is important to determine dose distribution around the brachytherapy capsule to create optimal treatment plant. In this way, dosimetric parameters are...
متن کاملDetermination of Dosimetric Characteristics of IrSeed 125I Brachytherapy Source
Introduction Low dose rate brachytherapy sources have been widely used for interstitial implants in tumor sites, particularly in prostate. Dosimetric characteristics of a new IrSeed 125I brachytherapy source have been determined using the LiF thermoluminescent dosimeter (TLD) chips. Materials and Methods Dose rate constant, radial dose function, and anisotropy function around the IrSeed 125I so...
متن کاملEstimation of dosimetric parameters of I-125 brachytherapy source model 6711 using GATE8.1 code
Brachytherapy is one type of internal radiation therapy where radiation sources, which are usually encapsulated are placed as close as possible to the tumor site inside the patient's body. In this technique, it is important to determine dose distribution around the brachytherapy capsule. Hereby, in this paper, dosimetric parameters of I-125 brachytherapy source model 6711 are estimated accordin...
متن کاملDosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry
Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 60 11 شماره
صفحات -
تاریخ انتشار 2015